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Abstract
Background: Consecutive testing of single nucleotide polymorphisms (SNPs) is usually employed to identify genetic
variants associated with complex traits. Ideally one should model all covariates in unison, but most existing analysis
methods for genome-wide association studies (GWAS) perform only univariate regression.
Results: We extend and e�ciently implement iterative hard thresholding (IHT) for multiple regression, treating all SNPs
simultaneously. Our extensions accommodate generalized linear models (GLMs), prior information on genetic variants,
and grouping of variants. In our simulations, IHT recovers up to 30% more true predictors than SNP-by-SNP association
testing, and exhibits a 2 to 3 orders of magnitude decrease in false positive rates compared to lasso regression. We also test
IHT on the UK Biobank hypertension phenotypes and the Northern Finland Birth Cohort of 1966 cardiovascular phenotypes.
We �nd that IHT scales to the large datasets of contemporary human genetics and recovers the plausible genetic variants
identi�ed by previous studies.
Conclusions: Our real data analysis and simulation studies suggest that IHT can (a) recover highly correlated predictors,
(b) avoid over-�tting, (c) deliver better true positive and false positive rates than either marginal testing or lasso
regression, (d) recover unbiased regression coe�cients, (e) exploit prior information and group-sparsity and (f) be used
with biobank sized data sets. Although these advances are studied for GWAS inference, our extensions are pertinent to
other regression problems with large numbers of predictors.
Key words: GWAS; multiple regression; high dimensional inference; iterative hard thresholding; biobank

Introduction

In genome-wide association studies (GWAS), modern genotyp-
ing technology coupled with imputation algorithms can pro-
duce an n × p genotype matrix X with n ≈ 106 subjects and
p ≈ 107 genetic predictors [1, 2]. Data sets of this size require
hundreds of gigabytes of disk space to store in compressed
form. Decompressing data to �oating point numbers for sta-

tistical analyses leads to matrices too large to �t into standard
computer memory. The computational burden of dealing with
massive GWAS datasets limits statistical analysis and interpre-
tation. This paper discusses and extends a class of algorithms
capable of meeting the challenge of multiple regression models
with modern GWAS data scales.
Traditionally, GWAS analysis has focused on SNP-by-SNP

(single nucleotide polymorphism) association testing [1, 3],
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Key Points

• Single-SNP association testing assumes all SNPs have independent e�ects. IHT and lasso regression capture the e�ect of
each SNP adjusted for all other SNPs.

• Shrinkage caused by lasso regression leaves a lot of trait variance unexplained. The variance gap is �lled by false positives.
• IHT achieves more precise parameter estimates and better model selection than lasso or marginal regressions.
• We extend IHT from ordinary linear regression to generalized linear regression.
• We also show how to include weights in IHT and perform doubly sparse regression (a limited number of SNP groups and
a limited number of SNPs per group).

with a p-value computed for each SNP via linear regres-
sion. This approach enjoys the advantages of simplicity, in-
terpretability, and a low computational complexity of O(np).
Furthermore, marginal linear regressions make e�cient use
of computer memory, since computations are carried out on
genotype vectors one at a time, as opposed to running on the
full genotype matrix in multiple regression. Some authors fur-
ther increase association power by reframing GWAS as a linear
mixed model problem and proceeding with variance compo-
nent selection [4, 5]. These advances remain within the scope
of marginal analysis.
Despite their numerous successes [2], marginal regression

is less than ideal for GWAS. It implicitly assumes that all SNPs
have independent e�ects. In contrast, multiple regression can
in principle model the e�ect of all SNPs simultaneously. This
approach captures the biology behind GWAS more realistically
because traits are usually determined by multiple SNPs acting
in unison. Marginal regression selects associated SNPs one by
one based on a pre-set threshold. Given the stringency of the
p-value threshold, marginal regression can miss many causal
SNPs with low e�ect sizes. As a result, heritability is underes-
timated. When p� n, one usually assumes that the number of
variants k associated with a complex trait is much less than n.
If this is true, we can expect multiple regression models to per-
form better because it a) o�ers better outlier detection [6] and
better prediction, b) accounts for the correlations among SNPs,
and c) allows investigators to model interactions. Of course,
these advantages are predicated on �nding the truly associated
SNPs.
Adding penalties to the loss function is one way of achieving

parsimony in multiple regression. The lasso [7, 8] is the most
popular model selection device in current use. The lasso model
selects non-zero parameters by minimizing the criterion

f(β) = `(β) + λ‖β‖1,
where `(β) is a convex loss, λ is a sparsity tuning constant,
and ‖β‖1 =∑

j |βj| is the `1 norm of the parameters. The lasso
has the virtues of preserving convexity and driving most pa-
rameter estimates to 0. Minimization can be conducted e�-
ciently via cyclic coordinate descent [9, 10]. The magnitude of
the nonzero tuning constant λ determines the number of pre-
dictors selected.
Despite its widespread use, the lasso penalty has some

drawbacks. First, the `1 penalty tends to shrink parameterstoward 0, sometimes severely so. Second, λ must be tuned
to achieve a given model size. Third, λ is chosen by cross-
validation, a costly procedure. Fourth and most importantly,
the shrinkage caused by the penalty leaves a lot of unex-
plained trait variance, which tends to encourage too many
false positives to enter the model ultimately identi�ed by cross-
validation.
In�ated false positive rates can be mitigated by substitut-

ing nonconvex penalties for the `1 penalty. For example, theminimax concave penalty (MCP) [11]

λp(βj) = λ

∫ |βj|
0

(
1 – s
λγ

)
+ ds

starts out at βj = 0 with slope λ and gradually transitions toa slope of 0 at βj = λγ. With minor adjustments, the coordi-nate descent algorithm for the lasso carries over to MCP penal-
ized regression [12, 13]. Model selection is achieved without
severe shrinkage, and inference in GWAS improves [14]. How-
ever, in our experience its false negative rate is considerably
higher than IHT’s rate [15]. A second remedy for the lasso, sta-
bility selection, weeds out false positives by looking for consis-
tent predictor selection across random halves of the data [16].
However, it is known to be under-powered for GWAS compared
to standard univariate selection [17].
In contrast, iterative hard thresholding (IHT) minimizes a

loss `(β) subject to the nonconvex sparsity constraint ‖β‖0 ≤ k,where ‖β‖0 counts the number of non-zero components of β[18, 19, 20]. Figure 1 explains graphically how the `0 penaltyreduces the bias of the selected parameters. In the �gure λ, γ,
and k are chosen so that the same range of β values are sent
to zero. To its detriment, the lasso penalty shrinks all β’s, no
matter how large their absolute values. The nonconvex MCP
penalty avoids shrinkage for large β’s but exerts shrinkage for
intermediate β’s. IHT, which is both nonconvex and discon-
tinuous, avoids shrinkage altogether. For GWAS, the sparsity
model-size constant k also has a simpler and more intuitive
interpretation than the lasso tuning constant λ. Finally, both
false positive and false negative rates are well controlled. Bal-
anced against these advantages is the loss of convexity in op-
timization and concomitant loss of computational e�ciency.
In practice, the computational barriers are surmountable and
are compensated by the excellent results delivered by IHT in
high-dimensional regression problems such as multiple GWAS
regression.

[INSERT FIGURE 1 HERE]

This article has four interrelated goals. First, we extend
IHT to generalized linear models. These models encompass
most of applied statistics. Previous IHT algorithms focused on
normal or logistic sparse regression scenarios. Our software
can also perform sparse regression under Poisson and negative
binomial response distributions and can be easily extended to
other GLM distributions as needed. The key to our extension
is the derivation of a nearly optimal step size s for improv-
ing the loglikelihood at each iteration. Second, we introduce
doubly-sparse regression to IHT. Previous authors have con-
sidered group sparsity [21]. The latter tactic limits the number
of groups selected. It is also useful to limit the number of pre-
dictors selected per group. Double sparsity strikes a compro-
mise that encourages selection of correlated causative variants
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in linkage disequilibrium (LD). Notably, this technique general-
izes group-IHT. Third, we demonstrate how to incorporate pre-
determined SNP weights in IHT. Our simple and interpretable
weighting option allows users to introduce prior knowledge
into sparse projection. Thus, one can favor predictors whose
association to the response is supported by external evidence.
Fourth, we present MendelIHT.jl: a scalable, open source, and
user friendly software for IHT in the high performance pro-
gramming language Julia [22].

Model Development

This section sketches our extensions of iterative hard thresh-
olding (IHT).

IHT Background

IHT was originally formulated for sparse signal reconstruction,
which is framed as sparse linear least squares regression. In
classical linear regression, we are given an n × p design ma-
trix X and a corresponding n-component response vector y.
We then postulate that y has mean E(y) = Xβ and that the
residual vector y – Xβ has independent Gaussian components
with a common variance. The parameter (regression coe�-
cient) vector β is estimated by minimizing the sum of squares
f(β) = 12‖y – Xβ‖22. The solution to this problem is known as
the ordinary least squares estimator and can be written explic-
itly as β̂ = (XtX)–1Xty, provided the problem is overdetermined
(n > p). This paradigm breaks down in the high-dimensional
regime n � p, where the parameter vector β is underdeter-
mined. In the spirit of parsimony, IHT seeks a sparse version
of β that gives a good �t to the data. This is accomplished
by minimizing f(β) subject to ‖β‖0 ≤ k for a small value of k,where ‖ · ‖0 counts the number of nonzero entries of a vector.The optimization problem is formally:

min 12 ||y – Xβ||22 subject to ||β||0 ≤ k. (1)
IHT abandons the explicit formula for β̂ because it fails to re-
spect sparsity and involves the numerically intractable matrix
inverse (XtX)–1.
IHT combines three core ideas. The �rst is steepest descent.

Elementary calculus tells us that the negative gradient –∇f(x)
is the direction of steepest descent of f(β) at x. First-order
optimization methods like IHT de�ne the next iterate in mini-
mization by the formula βn+1 = βn + snvn, where vn = –∇f(βn)and sn > 0 is some optimally chosen step size. In the case oflinear regression –∇f(β) = Xt(y – Xβ). To reduce the error at
each iteration, the optimal step size sn can be selected by min-imizing the second-order Taylor expansion

f(βn + snvn)
= f(βn) + sn∇f(βn)tvn + s

2
n2 vtnd2f(βn)vn

= f(βn) – sn‖∇f(βn)‖22 + s
2
n2 ∇f(βn)td2f(βn)∇f(βn)

with respect to sn. Here d2f(β) = XtX is the Hessian matrixof second partial derivatives. Because f(β) is quadratic, the
expansion is exact. Its minimum occurs at the step size

sn = ‖∇f(βn)‖22
∇f(βn)td2f(βn)∇f(βn) . (2)

This formula summarizes the second core idea.
The third component of IHT involves projecting the steepest

Family Mean Domain Var(y) g(s)
Normal R φ2 1
Poisson [0,∞) µ es

Bernoulli [0, 1] µ(1 – µ) es1+esGamma [0,∞) µ2φ s–1
Inverse Gaussian [0,∞) µ3φ s–1/2
Negative Binomial [0,∞) µ(µφ + 1) es

Table 1. Summary of mean domains and variances for commonexponential distributions. In GLM, µ = g(xtβ) denotes the mean,
s = xtβ the linear responses, g is the inverse link function, and φthe dispersion. Except for the negative binomial, all inverse linksare canonical.

descent update βn + snvn onto the sparsity set Sk = {β : ‖β‖0 ≤
k}. The relevant projection operator PSk (β) sets all but the klargest entries of β in magnitude to 0. In summary, IHT solves
problem (1) by updating the parameter vector β according to
the recipe:

βn+1 = PSk
(
βn – sn∇f(βn))

with the step size given by formula (2).

An optional debiasing step can be added to improve pa-
rameter estimates. This involves replacing βn+1 by the exactminimum point of f(β) in the subspace de�ned by the sup-
port {j : βn+1,j 6= 0} of βn+1. Debiasing is e�cient because itsolves a low-dimensional problem. Several versions of hard-
thresholding algorithms have been proposed in the signal pro-
cessing literature. The �rst of these, NIHT [20], omits debais-
ing. The rest, HTP[23], GraHTP [24], and CoSaMp [25] o�er
debiasing.

IHT for Generalized Linear Models

A generalized linear model (GLM) involves responses y fol-
lowing a natural exponential distribution with density in the
canonical form

f(y | θ,φ) = exp
[ yθ – b(θ)

a(φ) + c(y,φ)
]
,

where y is the data, θ is the natural parameter, φ > 0 is the
scale (dispersion), and a(φ), b(θ), and c(y,φ) are known func-
tions which vary depending on the distribution [26, 27]. Sim-
ple calculations show that y has mean µ = b′(θ) and variance
σ2 = b′′(θ)a(φ); accordingly, σ2 is a function of µ. Table 1 sum-
marizes the mean domains and variances of a few common ex-
ponential families. Covariates enter GLM modeling through an
inverse link representation µ = g(xtβ), where x is a vector of
covariates (predictors) andβ is vector of regression coe�cients
(parameters). In statistical practice, data arrive as a sample of
independent responses y1, . . . , ym with di�erent covariate vec-tors x1, . . . ,xm. To put each predictor on an equal footing, eachshould be standardized to have mean 0 and variance 1. Includ-
ing an additional intercept term is standard practice.

If we assemble a designmatrixX by stacking the row vectors
xti , then we can calculate the loglikelihood, score, and expected
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information [26, 28, 27, 29]

L(β) = n∑
i=1

[
yiθi – bi(θi)
ai(φi) + c(yi,φi)

]

∇L(β) = n∑
i=1
(yi – µi)g

′(xtiβ)
σ2i

xi = XtW1(y – µ) (3)

J(β) = n∑
i=1

1
σ2i
g′(xtiβ)2xixti = XtW2X,

where W1 and W2 are two diagonal matrices. The second haspositive diagonal entries; they coincide under the identity in-
verse link g(s) = s.
In the generalized linearmodel version of IHT, wemaximize

L(β) (equivalent to minimizing f(β) = –L(β)) and substitute
the expected information J(βn) = E[–d2L(βn)] for d2f(βn) informula (2). This translates into the following step size in GLM
estimation:

sn = ‖∇L(βn)‖22
∇L(βn)tJ(βn)∇L(βn) . (4)

This substitution is a key ingredient of our extended IHT. It
simpli�es computations and guarantees that the step size is
nonnegative.

Doubly Sparse Projections

The e�ectiveness of group sparsity in penalized regression has
been demonstrated in general [30, 31] and for GWAS [32] in
particular. Group IHT [21] enforces group sparsity but does
not enforce within-group sparsity. In GWAS, model selection
is desired within groups as well to pinpoint causal SNPs. Fur-
thermore, one concern in GWAS is that two causative SNPs can
be highly correlated with each other due to linkage disequilib-
rium (LD). When sensible group information is available, dou-
bly sparse IHT encourages the detection of causative yet cor-
related SNPs while enforcing sparsity within groups. Here we
discuss how to carry out a doubly-sparse projection that en-
forces both within- and between-group sparsity.
Suppose we divide the SNPs of a study into a collection G

of nonoverlapping groups. Given a parameter vector β and a
group g ∈ G, let βg denote the components of β correspond-
ing to the SNPs in g. Now suppose we want to select at most j
groups and at most λg ∈ Z+ SNPs for each group g. In project-
ing β, the component βi is untouched for a selected SNP i. Foran unselected SNP, βi is reset to 0. By analogy with our earlierdiscussion, we can de�ne a sparsity projection operator Pg(βg)for each group g; Pg(βg) selects the λg most prominent SNPsin group g. The potential reduction in the squared distance of-
fered by group g is rg = ‖βg‖22–‖Pg(βg)‖22. The j selected groupsare determined by selecting the j largest values of rg. If desired,
we can set the sparsity level λg for each group high enough so that all
SNPs in group g come into play. Thus, doubly-sparse IHT generalizes
group-IHT. In Algorithm 1, we write P(β) for the overall projec-
tion with the component projections Pg(βg) on the j selectedgroups and projection to zero on the remaining groups.

Prior weights in IHT

Zhou et al. [32] treat prior weights in penalized GWAS. Before
calculating the lasso penalty, they multiply each component of
the parameter vector β by a positive weight wi. We can do thesame in IHT before projection. Thus, instead of projecting the
steepest descent step β = βn + snvn, we project the Hadamard(pointwise) product w ◦ β of β with a weight vector w. This

produces a vector with a sensible support S. The next iterate
βn+1 is de�ned to have support S and to be equal to βn + snvnon S.
In GWAS, weights can and should be informed by prior bi-

ological knowledge. A simple scheme for choosing noncon-
stant weights relies on minor allele frequencies. For instance,
Zhou et al. [33] assign SNP i with minor allele frequency pi the
weight wi = 1/

√2pi(1 – pi). Giving rare SNPs greater weight inthis fashion is most appropriate for traits under strong neg-
ative selection [34, 35]. Alternatively, our software permits
users to assign weights geared to speci�c pathway and gene
information.
de Lamare et al. [36] incorporate prior weights into IHT

by adding an element-wise logarithm of a weight vector q be-
fore projection. The weight vector q is updated iteratively and
requires two additional tuning constants that in practice are
only obtained through cross validation. Our weighting scheme
is simpler, more computationally e�cient, and more inter-
pretable.

Algorithm Summary

The �nal algorithm combining doubly sparse projections, prior
weight scaling, and debiasing is summarized in Algorithm 1.
Algorithm 1: Iterative hard-thresholding
Input :Design matrix X, response vector y, membership

vector g, weight vector w, max number of
groups j, and overall sparsity projection P(β).

1 Initialize: β ≡ 0.
2 while not converged do
3 Calculate: score = v, Fisher information matrix = J,

and step size = s = vtv
vtJv

4 Ascent direction with scaling: β̃ = w ◦ (βn + sv)
5 Project to sparsity: β̃ = P(β̃) ./w (where ./ is

elementwise division)
6 while L(β̃) ≤ L(βn), backtrack ≤ 5 do
7 s = s/2
8 Redo lines 4 to 5
9 end
10 (Optional) Debias: Let F = supp(β̃), compute

β̂ = argmax{β:β restricted to F} L(β)
11 Accept proposal: βn+1 = β̂

12 end
Output :β with j active groups and λg active predictorsfor group g

Results

Readers can reproduce our results by accessing the software,
documentation, and Jupyter notebooks at:

https://github.com/OpenMendel/MendelIHT.jl

Scalability of IHT

To test the scalability of our implementation, we ran IHT on
p = 106 SNPs for sample sizes n = 10, 000, 20, 000, ..., 120, 000
with �ve independent replicates per n. All simulations rely on
a true sparsity level of k = 10. Based on an Intel-E5-2670 ma-
chine with 63GB of RAM and a single 3.3GHz processor, Fig-
ure 2 plots the IHT median CPU time per iteration, median
iterations to convergence, and median memory usage under
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Gaussian, logistic, Poisson, and negative binomial models. The
largest matrix simulated here is 30GB in size and can still �t
into our personal computer’s memory. Of course, it is possible
to test even larger sample sizes using cloud or cluster resources,
which are often needed in practice.
The formation of the vector µ of predicted values requires

only a limited number of nonzero regression coe�cients. Con-
sequently, the computational complexity of this phase of IHT
is relatively light. In contrast, calculation of the Fisher score
(gradient) and information (expected negative Hessian) depend
on the entire genotype matrix X. Fortunately, each of the np
entries of X can be compressed to 2 bits. Figure 2b and d show
that IHT memory demands beyond storing X never exceeded
a few gigabytes. Figure 2a and c show that IHT run time per
iteration increases linearly in problem size n. Similarly, we
expect increasing p will increase run time linearly, since the
bottleneck of IHT is the matrix-vector multiplication step in
computing the gradient, which scales as O(np). Debiasing in-
creases run time per iteration only slightly. Except for negative
binomial responses, debiasing is e�ective in reducing the num-
ber of iterations required for convergence and hence overall run
time.

[INSERT FIGURE 2 HERE]

Cross Validation in Model Selection

In actual studies, the true number of genetic predictors ktrueis unknown. This section investigates how q-fold cross-
validation can determine the best model size on simulated data.
Under normal, logistic, Poisson, and negative binomial models,
we considered 50 di�erent combinations of X, y, andβtrue with
ktrue = 10, n = 5000 samples, and p = 50, 000 SNPs �xed in allreplicates. Here, ktrue is chosen so that it is closer to our NFBCand UK Biobank results. On these data sets we conducted 5-
fold cross validation across 20 model sizes k ranging from 1 to
20. Figure 3 plots deviance residuals on the holdout dataset
for each of the four GLM responses (mean squared error in the
case of normal responses) and the best estimate k̂ of ktrue.Figure 3 shows that ktrue can be e�ectively recovered bycross validation. In general, prediction error starts o� high
where the proposed sparsity level k severely underestimates
ktrue and plateaus when ktrue is reached (Figure 3a-d). Fur-thermore, the estimated sparsity k̂ for each run is narrowly
centered around ktrue = 10 (Figure 3e-f). In fact, |k̂– ktrue| ≤ 4always holds. When k̂ exceeds ktrue, the estimated regressioncoe�cients for the false predictors tend to be very small. In
other words, IHT is robust to over�tting, in contrast to lasso
penalized regression. We see qualitatively similar results when
ktrue is large. This proved to be the case in our previous paper[15] for Gaussian models with ktrue ∈ {100, 200, 300}.

[INSERT FIGURE 3 HERE]

Comparing IHT to Lasso and Marginal Tests in Model
Selection

Comparison of the true positive and false positive rates of IHT
and its main competitors is revealing. For lasso regression
we use the glmnet implementation of cyclic coordinate descent
[9, 37, 10] (v2.0-16 implemented in R 3.5.2); for marginal test-
ing we use the beta version of MendelGWAS [38]. As explained
later, Poisson regression is supplemented by zero-in�ated
Poisson regression implemented under the pscl [39] (v1.5.2)
package of R. Unfortunately, glmnet does not accommodate neg-
ative binomial regression. Because both glmnet and pscl oper-
ate on �oating point numbers, we limit our comparisons to

Table 2. IHT achieves the best balance of false positives and truepositives compared to lasso and marginal (single-snp) regression.
Normal Logistic Poisson Neg Bin

IHT TP 8.84 6.28 7.2 9.0
IHT FP 0.02 0.1 1.28 0.98
Lasso TP 9.52 8.16 9.28 NA
Lasso FP 31.26 45.76 102.24 NA

Marginal TP 7.18 5.76 9.04 (5.94) 5.98
Marginal FP 0.06 0.02 1527.9 (0.0) 0.0

TP = true positives, FP = false positives. There are k = 10 causal SNPs. Best
model size for IHT and lasso were chosen by cross validation. () = zero-in�ated
Poisson regression.

small problems with 1000 subjects, 10,000 SNPs, 50 replicates,
and k = 10 causal SNPs. IHT performsmodel selection by 3-fold
cross validation across model sizes ranging from 1 to 50. This
range is generous enough to cover the models selected by lasso
regression. We adjust for multiple testing in the marginal case
test by applying a p-value cuto� of 5× 10–6.
Table 2 demonstrates that IHT achieves the best balance be-

tween maximizing true positives and minimizing false posi-
tives. IHT �nds more true positives than marginal testing and
almost as many as lasso regression. IHT also �nds far fewer
false positives than lasso regression. Poisson regression is ex-
ceptional in yielding an excessive number of false positives in
marginal testing. A similar but less extreme trend is observed
for lasso regression. The marginal false positive rate is reduced
by switching to zero-in�ated Poisson regression. This alterna-
tive model is capable of handling overdispersion due an excess
of 0 values. Interestingly, IHT rescues the Poisson model by
accurately capturing the simultaneous impact of multiple pre-
dictors.

Reconstruction Quality for GWAS Data

Table 3 demonstrates that IHT estimates show little bias com-
pared to estimates from lasso and marginal regressions. These
trends hold with or without debiasing as described earlier. The
proportion of variance explained is approximately the same
in both scenarios. The displayed values are the averaged es-
timated β’s, computed among the SNPs actually found. As
expected, lasso estimates show severe shrinkage compared to
IHT. Estimates frommarginal tests are severely overestimated, since
each SNP are asked to explain more trait variance than it could. As
the magnitude of βtrue falls, IHT estimates show an upward
absolute bias, consistent with the winner’s curse phenomenon.
When sample sizes are small, small e�ect sizes make most pre-
dictors imperceptible amid the random noise. The winner’s
curse operates in this regime and cannot be eliminated by IHT.
Lasso’s strong shrinkage overwhelms the bias of the winner’s
curse and yields estimates smaller than true values.
The results displayed in Table 3 re�ect n = 5, 000 subjects,

p = 10, 000 SNPs, 100 replicates, and a sparsity level k �xed
at its true value ktrue = 10. The λ value for lasso is chosen bycross validation. To avoid data sets with monomorphic SNPs,
theminimumminor allele frequency (maf) is set at 0.05.For lin-
ear, logistic and Poisson regressions in marginal tests, we �rst screen
for potential SNPs via a score test. Only top SNPs are used in the
more rigorous and more computationally intensive likelihood ratio
tests, which gives the beta estimates. This procedure is described in
[38]. We ran likelihood ratio tests for all SNPs in the negative bino-
mial model because the screening procedure is not yet implemented.
However, the in�ation in parameter estiamtes are present through-
out all marginal tests.
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Table 3. Comparison of coe�cient estimates among IHT, lasso, andmarginal regression methods.
βtrue βNormalIHT β

Logistic
IHT βPoissonIHT β

NegBin
IHT

.5 .501± .015 .508± .039 .492± .039 .567± .670
.25 .249± .013 .256± .038 .247± .012 .249± .012
.10 .097± .014 .125± .016 .100± .014 .010± .012
.05 .063± .007 .108± .006 .057± .008 .060± .008
βtrue βNormallasso β

Logistic
lasso βPoissonlasso β

NegBin
lasso

.5 .451± .015 .366± .058 .458± .037 NA
.25 .199± .013 .137± .032 .208± .015 NA
.10 .046± .014 .022± .016 .058± .016 NA
.05 .012± .008 .008± .003 .012± .009 NA
βtrue βNormalmarginal β

Logistic
marginal βPoissonmarginal β

NegBin
marginal

.5 .990± .500 .983± .475 .942± .331 .930± .315
.25 .493± .189 .480± .216 .452± .184 .486± .178
.10 .203± .078 * .198± .097 .190± .090
.05 * * .165± .049 .097± .060

Displayed coe�cients are average �tted valued ± one standard error for the
discovered predictors. * = zero true positives observed on average. NA = glmnet
does not support negative binomial lasso regression. There are k = 10 true
SNPs.

Table 4. Doubly-sparse IHT enhances model selection on simulateddata.
Ungrouped-IHT Grouped-IHT
TP FP TP FP

Normal 11.1± 1.9 3.9± 1.9 12.2± 2.0 2.8± 2.0
Logistic 3.8± 1.6 11.2± 1.6 7.7± 2.2 7.3± 2.2
Poisson 11.5± 2.2 3.5± 2.2 12.4± 1.7 2.6± 1.7
Neg Bin 11.0± 2.1 4.0± 2.1 12.4± 1.6 2.6± 1.6

TP = true positives, FP = false positives,± 1 standard error. There are 15 causal
SNPs in 5 groups, each containing k ∈= {1, 2, ...5} SNPs.

Correlated Covariates and Doubly Sparse Projections

Next we study how well IHT works on correlated data and
whether doubly-sparse projection can enhance model selec-
tion. Table 4 shows that, in the presence of extensive LD,
IHT performs reasonably well even without grouping informa-
tion. When grouping information is available, group IHT en-
hances model selection. The results displayed in Table 4 re�ect
n = 1, 000 samples, p = 10, 000 SNPs, and 100 replicates. Each
SNP belongs to 1 of 500 disjoint groups containing 20 SNPs
each; j = 5 distinct groups are each assigned 1, 2, ..., 5 causal
SNPs with e�ect sizes randomly chosen from {–0.2, 0.2}. In
all there 15 causal SNPs. For grouped-IHT, we assume perfect
group information. That is, groups containing 1 ∼ 5 causative
SNPs are assigned λg ∈ {1, 2, ..., 5}. The remaining groups areassigned λg = 1. As described in the Methods Section, the sim-ulated data show LD within each group, with the degree of LD
between two SNPs decreasing as their separation increases. Al-
though the conditions of this simulation are somewhat ideal-
ized, they mimic what might be observed if small genetic re-
gions of whole exome data were used with IHT.
We repeated this examination of doubly sparse projection

for the �rst 30, 000 SNPs of the NFBC1966 [40] data for all
samples passing the quality control measures outlined in our
Methods Section. We arbitrarily assembled 2 large groups with
2000 SNPs, 5 medium groups with 500 SNPs, and 10 small
groups with 100 SNPs, representing genes of di�erent length.
The remaining SNPs are lumped into a �nal group representing
non-coding regions. In all there are 18 groups. Since group as-

Table 5. Doubly sparse IHT is comparable to regular IHT on NFBCdataset using arbitrary groups
Ungrouped-IHT Grouped-IHT
TP FP TP FP

Normal 17.0± 1.2 2.0± 1.2 17.0± 1.4 2.1± 1.4
Logistic 15.7± 1.5 3.3± 1.5 15.8± 1.6 3.2± 1.6
Poisson 17.1± 1.3 1.9± 1.3 17.0± 1.4 2.0± 1.4
Neg Bin 17.2± 1.5 1.8± 1.5 17.0± 1.5 2.1± 1.5

TP = true positives, FP = false positives, ± 1 standard error. There are 19
causal SNPs in 18 groups of various size. Simulation was carried out on the
�rst 30,000 SNPs of the NFBC1966 [40] dataset.

Table 6. Weighted IHT enhances model selection.
Unweighted-IHT Weighted-IHT
TP FP TP FP

Normal 9.2± 0.4 0.8± 0.4 9.4± 0.5 0.6± 0.5
Logistic 7.3± 0.6 2.7± 0.6 8.0± 0.6 2.0± 0.6
Poisson 8.0± 0.6 2.0± 0.6 8.3± 0.6 1.7± 0.6
Neg Bin 9.2± 0.5 0.8± 0.5 9.4± 0.5 0.6± 0.5

TP = true positives, FP = false positives, ± 1 standard error. The true number
of SNPs is k = 10.

signments are essentially random beyond choosing neighbor-
ing SNPs, this example represents the worse case scenario of a
relatively sparsemarkermapwith undi�erentiated SNP groups.
We randomly selected 1 large group, 2 medium groups, and 3
small groups to contain 5, 3, and 2 causal SNPs, respectively.
The non-coding region harbors 2 causal SNPs. In all there are
19 causal SNPs. E�ect sizes were randomly chosen to be –0.2
or 0.2. We ran 100 independent simulation studies under this
setup, where the large, medium, small, and non-coding groups
are each allowed 5, 3, 2, and 2 active SNPs. The results are dis-
played in Table 5. We �nd that even in this worse case scenario
where group information is completely lacking that grouped
IHT does no worse than ungrouped IHT.

Introduction of Prior Weights

This section considers how scaling by prior weights helps in
model selection. Table 6 compares weighted IHT reconstruc-
tions with unweighted reconstructions where all weightswi = 1.The weighted version of IHT consistently �nds approximately
10% more true predictors than the unweighted version. Here
we simulated 50 replicates involving 1000 subjects, 10,000 un-
correlated variants, and k = 10 true predictors for each GLM.
For the sake of simplicity, we de�ned a prior weight wi = 2for about one-tenth of all variants, including the 10 true pre-
dictors. For the remaining SNPs the prior weight is wi = 1.These choices re�ect a scenario where one tenth of all geno-
typed variants fall in a protein coding region, including the 10
true predictors, and where such variants are twice as likely to
in�uence a trait as those falling in non-coding regions.

Hypertension GWAS in the UK Biobank

Now we test IHT on the second release of UK Biobank [41] data.
This dataset contains ∼ 500, 000 samples and ∼ 800, 000 SNPs
without imputation. Phenotypes are systolic blood pressure
(SBP) and diastolic blood pressure (DBP), averaged over 4 or
fewer readings. To adjust for ancestry and relatedness, we in-
cluded the following nongenetic covariates: sex, hospital cen-
ter, age, age2, BMI, and the top 10 principal components com-
puted with FlashPCA2 [42]. After various quality control pro-
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cedures as outlined in the Methods section, the �nal dataset
used in our analysis contains 185, 565 samples and 470, 228
SNPs. For UK biobank analysis, we omitted debiasing, prior
weighting, and doubly sparse projections.
Stage 2 Hypertension under a Logistic Model
Consistent with the clinical de�nition for stage 2 hypertension
(S2 Hyp) [43], we designated patients as hypertensive if their
SBP ≥ 140mmHG or DBP ≥ 90 mmHG. We ran 5-fold cross val-
idated logistic model across model sizes k = {1, 2, ..., 50}. The
work load was distributed to 50 computers, each with 5 CPU
cores. Each computer was assigned one model size, and all
completed its task within 24 hours. The model size that mini-
mizes the deviance residuals is k̂ = 39. The selected predictors
include the 33 SNPs listed in Table 7 and 6 non-genetic co-
variates: intercept, sex, age, age2, BMI, and the �fth principal
component.

[INSERT FIGURE 4 HERE]

Figure 4, generated by MendelPlots.jl [44], compares univari-
ate logistic GWAS with logistic IHT. SNPs recovered by IHT are circled
in black. Our Github page records the full list of signi�cant SNPs de-
tected by univariate GWAS. There are 10 SNPs selected by IHT that
have a p-value less than 5 × 10–8; 83 SNPs pass the threshold in the
univariate analysis but remain unselected by IHT. IHT tends to pick
themost signi�cant SNP among a group of SNPs in LD. Table 7 shows
25 SNPs selected by IHT that were previously reported to be associ-
ated with elevated SBP/DBP [45] or that exhibit genome-wide sig-
ni�cance when the same data are analyzed as an ordinal trait [46].
Ordinal univariateGWAS treats the di�erent stages of hypertensionas
ordered categories. Ordinal GWAS has higher power than logistic or
multinomial GWAS [46]. The knownSNPs displayed in Table 7 tend to
have larger absolute e�ect sizes (avg 0.033) than the unknown SNPs
(avg = 0.027). Finally, IHT is able to recover two pairs of highly corre-
lated SNPs: (rs1374264,rs1898841) and (rs7497304,rs2677738) with
pairwise correlations of r1,2 = 0.59 and r3,4 = 0.49.

Cardiovascular GWAS in NFBC1966

We also tested IHT on data from the 1966 Northern Finland
Birth Cohort (NFBC1966) [40]. Although this dataset is rel-
atively modest with 5402 participants and 364,590 SNPs, it
has two virtues. First, it has been analyzed multiple times
[15, 40, 47], so comparisonwith earlier analysis is easy. Second,
due to a population bottleneck [48], the participants’ chromo-
somes exhibit more extensive linkage disequilibrium than is
typically found in less isolated populations. Multiple regres-
sionmethods, including the lasso, have been criticized for their
inability to deal with the dependence among predictors induced
by LD. Therefore this dataset provides an interesting test case.
High Density Lipoprotein (HDL) Phenotype as a Normal model
Using IHT we �nd previously associated SNPs as well as a few
new potential associations. We model the HDL phenotype as
normally-distributed and �nd a best model size k̂ = 9 based
on 5-fold cross validation across model sizes k = {1, 2, ..., 20}.
Without debiasing, the analysis was completed in 2 hours and
4 minutes with 30 CPU cores on a single machine. Table 8
displays the recovered predictors. SNP rs1800961 was replaced
by rs7499892 with similar e�ect size if we add the debiasing
step in obtaining the �nal model.
Importantly, IHT is able to simultaneously recover e�ects

for SNPs (1) rs9261224, (2) rs6917603, and (3) rs6917603 with
pairwise correlations of r1,2 = 0.618, r1,3 = 0.984, and r2,3 =0.62. This result is achieved without grouping of SNPs, which
can further increase association power. Compared with earlier
analyses of these data, we �nd 3 SNPs that were not listed in

Table 7. UK Biobank GWAS results generated by running IHT onStage 2 Hypertension (S2 Hyp) under a logistic model. The SNP ID,chromosome number, position (in basepair), and estimated e�ectsizes are listed.
SNP Chrom Position β̂ Known?
rs17367504 1 11862778 0.046 [45, 46]
rs757110 2 17418477 -0.025
rs1898841 2 165070207 0.022 [46]
rs1374264 2 164999883 0.020 [46]
rs16998073 4 81184341 -0.048 [45, 46]
rs1173771 4 32815028 0.046 [45, 46]
rs13107325 4 103188709 0.030 [45, 46]
rs72742749 5 32834974 0.029
rs11241955 5 127626884 0.028
rs2072495 5 158296996 -0.027
rs805293 6 31688518 -0.029 [46]
rs2392929 7 106414069 -0.039 [45, 46]
rs73203495 8 11580334 -0.031
rs12258967 10 18727959 0.039 [45, 46]
rs11191580 10 104906211 0.039 [45, 46]
rs2274224 10 96039597 0.036 [46]
rs1530440 10 63524591 0.028 [45, 46]
rs10895001 11 100533021 0.043 [46]
rs2293579 11 47440758 -0.035 [46]
rs2923089 11 10357572 -0.029 [46]
rs762551 11 75041917 -0.027 [46]
rs4548577 11 46998512 0.026
rs2681492 12 90013089 0.030 [45, 46]
rs10849937 12 111792427 0.030 [46]
rs35085068 14 23409909 -0.027 [46]
rs12901664 15 98338524 -0.027
rs7497304 15 91429176 -0.021 [45, 46]
rs2677738 15 91441673 0.021 [46]
rs3744760 17 43195981 -0.043 [46]
rs292445 18 55897720 -0.026
rs167479 19 11526765 0.036 [45, 46]
rs34328549 19 7253184 0.035 [46]
rs16982520 20 57758720 -0.030 [45, 46]

Table 8. NFBC GWAS results generated by running IHT on highdensity lipoprotein (HDL) phenotype as a normal response. TheSNP ID, chromosome number, position (in basepair), and estimatede�ect sizes are listed.
SNP Chrom Position β̂ Known?
rs6917603 6 30125050 0.17 [15, 45]
rs9261256 6 30129920 -0.07 [15]
rs9261224 6 30121866 -0.03
rs7120118 11 47242866 -0.03 [15, 40, 45]
rs1532085 15 56470658 -0.04 [15, 40, 45]
rs3764261 16 55550825 -0.05 [15, 40, 45]
rs3852700 16 65829359 -0.03
rs1800961 20 42475778 0.03 [45]

our previous IHT paper [15], presumably due to slight algorith-
mic modi�cations. The authors of NFBC [40] found 5 SNPs as-
sociated with HDL under SNP-by-SNP testing. We did not �nd
SNPs rs2167079 and rs255049. To date, rs255049 was repli-
cated [47]. SNP rs2167079 has been reported to be associated
with an unrelated phenotype [49].

Discussion

Multiple regression methods like iterative hard thresholding
provide a principled way of model �tting and variable selection.
With increasing computing power and better software, mul-
tiple regression methods are likely to prevail over univariate
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methods. This paper introduces a scalable implementation of
iterative hard thresholding for generalized linear models. Be-
cause lasso regression can handle group and prior weights, we
have also extended IHT to incorporate such prior knowledge.
When it is available, enhanced IHT outperforms standard IHT.
Given its sharper parameter estimates and more robust model
selection, IHT is clearly superior to lasso selection or marginal
association testing in GWAS.
Our real data analyses and simulation studies suggest that

IHT can (a) recover highly correlated SNPs, (b) avoid over-
�tting, (c) deliver better true positive and false positive rates
than either marginal testing or lasso regression, (d) recover un-
biased regression coe�cients, and (e) exploit prior information
and group-sparsity. Our Julia implementation of IHT exploit
parallel computing strategies that scale to biobank-level data.
In our opinion, the time is ripe for the genomics community
to embrace multiple regression models as a supplement to and
possibly a replacement of marginal analysis.
Although we focused our attention on GWAS, the potential

applications of iterative hard thresholding reach far beyond
gene mapping. Our IHT implementation accepts arbitrary nu-
meric data and is suitable for a variety of applied statistics
problems. Genetics and the broader �eld of bioinformatics
are blessed with rich, ultra-high dimensional data. IHT is de-
signed to solve such problems. By extending IHT to the realm
of generalized linear models, it becomes possible to �t regres-
sion models with more exotic distributions than the Gaussian
distributions implicit in ordinary linear regression. In our view
IHT will eventually join and probably supplant lasso regression
as the method of choice in GWAS and other high-dimensional
regression settings.

Methods

Data Simulation

Our simulations mimic scenarios for a range of rare and com-
mon SNPs with or without LD. Unless otherwise stated, we des-
ignate 10 SNPs to be causal with e�ect sizes of 0.1, 0.2, ..., 1.0.
To generate independent SNP genotypes, we �rst sample a

minor allele frequency ρj ∼ Uniform(0, 0.5) for each SNP j. Toconstruct the genotype of person i at SNP j, we then sample
from a binomial distribution with success probability ρj andtwo trials. The vector of genotypes (minor allele counts) for
person i form row xti of the design matrix X. To generate SNPgenotypes with linkage disequilibrium, we divide all SNPs into
blocks of length 20. Within each block, we �rst sample x1 ∼

Bernoulli(0.5). Thenwe form a single haplotype block of length
20 by the following Markov chain procedure:

xi+1 =
{
xi with probability p
1 – xi with probability 1 – p

with default p = 0.75. For each block we form a pool of 20
haplotypes using this procedure, ensuring every one of the 40
alleles (2 at each SNP) are represented at least once. For each
person, the genotype vector in a block is formed by sampling 2
haplotypes with replacement from the pool and summing the
number of minor alleles at each SNP.
Depending on the simulation, the number of subjects range

from 1, 000 to 120, 000, and the number of independent SNPs
range from 10, 000 to 1, 000, 000. We simulate data under four
GLM distributions: normal (Gaussian), Bernoulli, Poisson, and
negative binomial. We generate component yi of the responsevector y by sampling from the corresponding distribution with
mean µi = g(xtiβ), where g is the inverse link function. For nor-malmodels we assume unit variance, and for negative binomial

models we assume 10 required failures. To avoid over�ows, we
clamp the mean g(xtiβ) to stay within [–20, 20]. (See Ad HocTactics for a detailed explanation). We apply the canonical link
for each distribution, except for the negative binomial, where
we apply the log link.

Real Data’s Quality Control Procedures

UK Biobank. Following the UK biobank’s own quality control
procedures, we �rst �ltered all samples for sex discordance and
high heterozygosity/missingness. Second, we included only
people of European ancestry and excluded �rst and second-
degree relatives based on empiric kinship coe�cients. Third,
we also excluded people who had taken hypertension related
medications at baseline. Finally, we only included people with
≥ 98% genotyping success rate over all chromosomes and SNPs
with ≥ 99% genotyping success rate. Calculation of kinship
coe�cients and �ltering were carried out via the OpenMendel
module SnpArrays [50]. Remaining missing genotypes were im-
puted using modal genotypes at each SNP. After these quality
control procedures, our UK biobank data is the same data that
was used in [46].
Northern Finland Birth Cohort. We imputed missing geno-

types with Mendel [51]. Following [15], we excluded subjects
with missing phenotypes, fasting subjects, and subjects on di-
abetes medication. We conducted quality control measures us-
ing the OpenMendel module SnpArrays [50]. Based on these
measures, we excluded SNPswithminor allele frequency≤ 0.01
and Hardy Weinberg equilibrium p-values ≤ 10–5. As for non-
genetic predictors, we included sex (the sexOCPG factor de�ned
in [40]) as well as the �rst 2 principal components of the geno-
type matrix computed via PLINK 2.0 alpha [52]. To put predic-
tors, genetic and non-genetic, on an equal footing, we stan-
dardized all predictors to have mean zero and unit variance.

Linear Algebra with Compressed Genotype Files

The genotype count matrix stores minor allele counts. The
PLINK genotype compression protocol [52] compactly stores
the corresponding 0’s, 1’s, and 2’s in 2 bits per SNP, achiev-
ing a compression ratio of 32:1 compared to storage as �oating
point numbers. For a sparsity level k model, we use OpenBLAS
(a highly optimized linear algebra library) to compute predicted
values. This requires transforming the k pertinent columns of
X into a �oating point matrix Xk and multiplying it times thecorresponding entries βk of β. The inverse link is then ap-
plied to Xkβk to give the mean vector µ = g(Xkβk). In com-puting the GLM gradient (equation 3), formation of the vec-
torW1(y–µ) involves no matrix multiplications. Computation
of the gradient XtW1(y – µ) is more complicated because the
full matrix X can no longer be avoided. Fortunately, the Open-
Mendel module SnpArrays [50] can be invoked to perform com-
pressed matrix times vector multiplication. Calculation of the
steplength of IHT requires computation of the quadratic form
∇L(βn)tXtW2X∇L(βn). Given the gradient, this computationrequires a single compressed matrix times vector multiplica-
tion. Finally, good statistical practice calls for standardizing
covariates. To standardize the genotype counts for SNP j, we
estimate its minor allele frequency pj and then substitute the
ratio xij–2pj√2pj(1–pj) for the genotype count xij for person i at SNP
j. This procedure is predicated on a binomial distribution for
the count xij. Our previous paper [15] shows how to accommo-date standardization in the matrix operations of IHT without
actually forming or storing the standardized matrix.
Although multiplication via the OpenMendel module

SnpArrays [50] is slower than OpenBLASmultiplication on small
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data sets, it can be as much as 10 times faster on large data
sets. OpenBLAS has advantages in parallelization, but it re-
quires �oating point arrays. Once the genotype matrix X ex-
ceeds the memory available in RAM, expensive data swapping
between RAM and hard disk memory sets in. This dramatically
slowsmatrix multiplication. SnpArrays is less vulnerable to this
hazard owing to compression. Once compressed data exceeds
RAM, SnpArrays also succumbs to the swapping problem. Cur-
rent laptop and desktop computers seldom have more than 32
GB of RAM, so we must resort to cluster or cloud computing
when input �les exceed 32 GB.

Computations Involving Non-genetic Covariates

Non-genetic covariates are stored as double or single precision
�oating point entries in an n× r design matrix Z. To accommo-
date an intercept, the �rst column should be a vector of 1’s. Let
γ denote the r vector of regression coe�cients corresponding
to Z. The full design matrix is the block matrix (XZ). Matrix
multiplications involving (XZ) should be carried out via

(XZ)
(
β

γ

)
= Xβ + Zγ and (XZ)t v =

(
Xtv
Ztv

)
.

Adherence to these rules ensures a low memory footprint.
Multiplication involving X can be conducted as previously ex-
plained. Multiplication involving Z can revert to BLAS.

Parallel Computation

The OpenBLAS library accessed by Julia is inherently parallel.
Beyond that we incorporate parallel processing in cross valida-
tion. Recall that in q-fold cross validation we separate subjects
into q disjoint subsets. We then �t a training model using q– 1
of those subsets on all desired sparsity levels and record the
mean-squared prediction error on the omitted subset. Each of
the q subsets serve as the testing set exactly once. Testing error
is averaged across the di�erent folds for each sparsity levels k.
The lowest average testing error determines the recommended
sparsity.

MendelIHT.jl o�ers 2 parallelism strategies in cross valida-
tion. Either the q training sets are each loaded to q di�erent
CPUs where each compute and test di�er sparsity levels se-
quentially, or each of the q training sets are cycled through
sequentially and each sparsity parameter is �tted and tested
in parallel. The former tactic requires enough disk space and
RAM to store q di�erent training data (where each typically re-
quire (q – 1)/q GB of the full data), but o�ers immense parallel
power because one can assign di�erent computers to handle
di�erent sparsity levels. This tactic allows one to �t biobank
scale data in less than a day assuming enough storage space
and computers are available. The latter tactic requires cycling
through the training sets sequentially. Since intermediate data
can be deleted, the tactic only requires enough disk space and
RAM to store 1 copy of the training set. MendelIHT.jl uses one
of Julia’s [22] standard library Distributed.jl to achieve the
aforementioned parallel strategies.

Ad Hoc Tactics to Prevent Over�ows

In Poisson and negative binomial regressions, the inverse link
argument exp(xtiβ) experiences numerical over�ows when theinner product xtiβ is too large. In general, we avoid run-
ning Poisson regression when response means are large. In
this regime a normal approximation is preferred. As a safety
feature, MendelIHT.jl clamps values of xtiβ to the interval

[–20, 20]. Note that penalized regression su�ers from the same
over�ow catastrophes.

Convergence and Backtracking

For each proposed IHT stepwe checkwhether the objective L(β)
increases. When it does not, we step-halve at most 5 times to
restore the ascent property. Convergence is declared when

||βn+1 –βn||∞||βn||∞ + 1 < Tolerance,

with the default tolerance being 0.0001. The addition of 1 in
the denominator of the convergence criterion guards against
division by 0.

Availability of source code

Project name: MendelIHT
Project home page:
https://github.com/OpenMendel/MendelIHT.jl
Operating systems: Mac OS, Linux, Windows
Programming language: Julia 1.0, 1.2
License: MIT
SciCrunch ID: SCR_018292
bio.tools ID: bio.tools/mendeliht.jl
The code to generate simulated data, as well as their
subsequent analysis, are available in our github repository
under �gures folder. Project.toml and Manifest.toml �les
can be used together to instantiate the same computing
environment in our paper. Notably, MendelIHT.jl interfaces
with the OpenMendel [38] package SnpArrays.jl [50] and
JuliaStats’s packages Distribution.jl [53] and GLM.jl [54].

Availability of supporting data and materials

The Northern Finland Birth Cohort 1966 (NFBC1966) [40]
was downloaded from dbGaP under dataset accession
pht002005.v1.p1. UK Biobank data are retrieved under Project
ID: 48152 and 15678. An archival snapshot of the code and
other supporting data is available via the GigaScience database,
GigaDB [55].
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Figure 1. The `0 quasinorm of IHT enforces sparsity without shrinkage. The estimated e�ect size (dashed line) is plotted against its true value (diagonal line) for
`1, MPC, and `0 penalties.
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(a) Speed per iteration without debiasing (b) Memory usage without debiasing (c) Median iterations until convergence.

Without debiasing With Debiasing

Normal 4.0 (1.0) 2.0 (0.0)
Logistic 10.0 (5.5) 2.5 (2.25)
Poisson 47.5 (9.75) 33.0 (5.75)
Neg Bin 9.0 (0.25) 15.0 (1.5)

( ) = interquartile range

(d) Speed per iteration with debiasing (e) Memory usage with debiasing

Figure 2. (a, d) Time per iteration scales linearly with data size. Speed is measured for compressed genotype �les. On uncompressed data, all responses are roughly
10 times faster. (b, e) Memory usage scales as ∼ 2np bits. Note memory for each response are usages in addition to loading the genotype matrix. Uncompressed
data requires 32 times more memory. (c) Debiasing reduces median iterations until convergence for all but negative binomial regression. Benchmarks were carried
out on 106 SNPs and sample sizes ranging from 10,000 to 120,000. Hence, the largest matrix here requires 30GB and can still �t into personal computer memories.
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(a) Normal (b) Logistic (c) Poisson (d) Negative Binomial

(e) Normal (f) Logistic (g) Poisson (h) Negative Binomial

Figure 3. Five-fold cross validation results is capable of identifying the true model size ktrue. (a-d) Deviance residuals of the testing set are minimized when theestimated model size k̂ ≈ ktrue. Each line represents 1 simulation. (e-h) k̂ is narrowly spread around ktrue = 10.
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Figure 4. Manhattan plot comparing a logistic (univariate) GWAS vs logistic IHT on UK Biobank data. Colored dots are log10 p-values from a logistic GWAS, and
the circled dots are SNPs recovered by IHT.
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